Mind Matters Natural and Artificial Intelligence News and Analysis

TagGeorg Cantor

big red numbers.jpg
random numbers

The “Jump” of Chaitin’s Omega Number

Gregory Chaitin explains, “For any infinity, there’s a bigger infinity, which is the infinity of all subsets of the previous step”

In last week’s podcast, “The Chaitin Interview V: Chaitin’s Number,” Walter Bradley Center director Robert J. Marks asked mathematician Gregory Chaitin (best known for Chaitin’s unknowable number) if the unknowable number could prove (or disprove) Goldbach’s Conjecture that every even number can be expressed as the sum of two primes. This task is harder than it first appears because even numbers go on indefinitely. A proof that Christian Goldbach (1690–1764) was right or wrong must show that even numbers must be like that, no matter how big they are or how many of them there are. This time out, Dr. Marks and Dr. Chaitin discuss what we can know about Omega numbers — and where famous mathematicians are buried. This…

abstract-virtual-binary-code-illustration-on-blurry-modern-office-building-background-big-data-and-coding-concept-multiexposure-stockpack-adobe-stock.jpg
Abstract virtual binary code illustration on blurry modern office building background. Big data and coding concept. Multiexposure

The Chaitin Interview V: Chaitin’s Number

Listen in as Robert J. Marks picks the mind of Professor Gregory Chaitin about Chaitin’s number – a number that has been called “mystical and magical”. How does this number work? Why do some people call it “Chaitin’s constant”? What is the usefulness of philosophizing in mathematics? Show Notes 00:27 | Introducing Gregory Chaitin and Chaitin’s number 01:32 | Chaitin’s…

silhouette-of-human-with-universe-and-physical-mathematical-formulas-stockpack-adobe-stock.jpg
Silhouette of human with universe and physical, mathematical formulas

Gregory Chaitin on the Great Mathematicians, East and West

Himself a “game-changer” in mathematics, Chaitin muses on what made the great thinkers stand out

In this week’s podcast, “The Chaitin interview I: Chaitin chats with Kurt Gödel,” Walter Bradley Center director Robert J. Marks interviewed mathematician and computer scientist Gregory Chaitin on the almost supernatural awareness that the great mathematicians had of the foundations of reality in the mathematics of our universe: https://episodes.castos.com/mindmatters/Mind-Matters-124-Gregory-Chaitin.mp3 This discussion begins at 8:26 min. A partial transcript, Show Notes and Additional Resources follow. Robert J. Marks: There are few people who can be credited without any controversy with the founding of a game changing field of mathematics. We are really fortunate today to talk to Gregory Chaitin (pictured) who has that distinction. Professor Chaitin is a co-founder of the Field of Algorithmic Information Theory that explores the properties of…

An abstract computer generated fractal design. A fractal is a never-ending pattern. Fractals are infinitely complex patterns that are self-similar across different scales.

Are Divergent Series Really an “Invention of the Devil”?

The real villain in the piece is horrendously non-specific concepts of infinity. But that can be fixed

It turns out that hyperreal numbers (i.e., infinities that obey algebraic rules) resolve many of the paradoxes that previously plagued conceptions of divergent series. It is now possible to assign specific values to divergent series.

Read More ›