Mind Matters Natural and Artificial Intelligence News and Analysis

TagAnimal Algorithms (book)

team of ants gathering strawberry, agriculture teamwork

Ants Use Algorithms Similar to Those of the Internet

Optimization algorithms enable the ant colony to decide how many ants to send to a given food source and when to drastically reduce the number

Researchers are beginning to understand how ant colonies can make complex decisions. It’s best understood, they say, as something like an optimization algorithm: Scientists found that ants and other natural systems use optimization algorithms similar to those used by engineered systems, including the Internet. These algorithms invest incrementally more resources as long as signs are encouraging but pull back quickly at the first sign of trouble. The systems are designed to be robust, allowing for portions to fail without harming the entire system. Understanding how these algorithms work in the real world may help solve engineering problems, whereas engineered systems may offer clues to understanding the behavior of ants, cells, and other natural systems. Cold Spring Harbor Laboratory, “Deciphering algorithms…

Nerve Cell. 3D. Neurons

When a Tiny Brain Is Actually an Advantage

Small size — which includes having a small brain — hones the gnat ogre’s remarkable neurological abilities

The University of Minnesota, pointing to a just-published research paper, asks us to contemplate a remarkable piece of flight engineering on the part of a rather frightening fly: For those of us who occasionally trip over a curb or bump into a door frame, it’s hard to imagine an organism with a brain smaller than the period at the end of this sentence deftly maneuvering around obstacles while chasing fast-moving prey on the wing… The research, carried out by Paloma Gonzalez-Bellido, Mary Sumner, and Trevor Wardill of the University of Minnesota’s College of Biological Sciences, and Sam Fabian of the Imperial College London Department of Bioengineering, focuses on the aerial feats of a miniature robber fly known as a gnat…

Closeup of a red wood ant. Concept useful insects.

Neuroscience Mystery: How Do Tiny Brains Enable Complex Behavior?

Eric Cassell notes that insects with brains of only a million neurons exhibit principles found only in the most advanced man-made navigation systems. How?

Recently, geologist Casey Luskin interviewed Eric Cassell, author of Animal Algorithms: Evolution and the Mysterious Origin of Ingenious Instincts (2021) on one of the central mysteries: How do animals “know” things that they can’t have figured out on their own? Consider, for example, butterflies migrating over several generations from Canada to Mexico and back. No single butterfly makes the whole trip there or back. How can animals do math they know nothing about? How can a great deal of information be packed into a brain with comparatively few neurons? We are slowly learning about some of that. Eric Cassell is an expert in navigation systems, including GPS, whose experience includes more than four decades in systems engineering related to aircraft,…

Businessman holds the model of business, made from wood blocks. Alternative risk concept, business plan and business strategy. Insurance concept.

Design versus Naturalist Origin Theories of Animal Algorithms

The programming inside the animal brain is much like a game of Jenga. If one tries to pull the wrong block, then the entire stack comes crashing down. Robert J. Marks and Eric Cassell discuss how animal algorithms serve as the perfect example of irreducible complexity. Show Notes 01:25 | Introducing Eric Cassell 01:52 | What is the source of…

Queen bee in bee hive laying eggs

Jaw Dropping Algorithms That Allow Social Behavior to Thrive

How do bees know how to build their hives? Insects have a wide variety of fascinating social behaviors. Where do they come from? Robert J. Marks and Eric Cassell, author of Animal Algorithms, discuss the origins of these mysterious instincts and how AI research has learned a great deal from nature. Show Notes 00:39 | Introducing Eric Cassell 01:01 |…

Ant action standing.Ant bridge unity team,Concept team work together

A Navigator Asks Animals: How Do You Find Your Way?

The results are amazing. Many life forms do math they know nothing about

In “New book spotlights high tech animal navigation,” aircraft navigator Eric Cassell, speaking recently with geologist Casey Luskin on his new book, Animal Algorithms: Evolution and the Mysterious Origin of Ingenious Instincts (2021)Animals “know” things that there is no way they thought of themselves — or that their parents did. The problem with the “nature or nurture?” debate we all learned about in Psychology 101 is that the debate doesn’t matter. There’s no such simple explanation for how animals learn things like this: … my favorite example is actually in, uh, a desert ant that resides in deserts in Africa, and these ants actually employ several different types of navigation centers. They use a sun compass, a polarized light compass.…

Ant action standing.Ant bridge unity team,Concept team work together

For Ants, Building a Bridge Is No “Simple” Task

There is nothing “simple” about designing neural systems and the computer systems to receive and interpret neural sensory inputs

Researching for my previous Mind Matters article about bird and bee biological software, I came across a short piece at Quanta Magazine entitled “The Simple Algorithm That Ants Use to Build Bridges.” Really, a “simple” insect algorithm? Intriguing. Eric Cassell’s book, Animal Algorithms (2021), reveals the complex and intricate hardware-software systems enabling bird and insect procedures for migration, building nests and structures, social cooperation, and navigation. Grounded in engineering training and experience, Cassell shows that animal algorithms must be designed top-down starting with a goal, fashioning the data input sensors, developing the necessary procedures, and implementing them in software to direct hardware. Yet the Quanta Magazine piece reported that Panamanian army ants’ procedures for building bridges of living ants is accomplished using a “simple algorithm.” The problem the army…

Canadian Geese Flying in V Formation

The Intelligence Birds and Bees Naturally Have — and We Don’t

An exploration of the stunning findings in Eric Cassell's new book, "Animal Algorithms"

You’re aiming to find your childhood friend’s home in a new city. A map helps; GPS is better. Accessing all that previously-acquired mapmakers’ knowledge, employing all of that satellite, radio and computing technology, you’ll probably (although not certainly) reach your goal. Could some “dumb bird” do any better?  Way better, actually.  Baked-in Brain Power A bird born near Wales (UK) knows how to fly over 6,200 miles (10,000 km) south in the winter, following the west coastlines of Europe and Africa, then crossing the Atlantic Ocean to land in Argentina. The same bird knows how to return to its original home a few months later. She flies north along the east coasts of South and North America, then crosses the Atlantic back…