Mind Matters Natural and Artificial Intelligence News and Analysis

TagUnknowable number

businesswoman-protect-wooden-block-fall-to-planning-and-strategy-in-risk-to-business-alternative-and-prevent-investment-insurance-business-risk-control-concept-stockpack-adobe-stock.jpg
Businesswoman protect wooden block fall to planning and strategy in risk to business Alternative and prevent. Investment Insurance ,Business risk control concept,

Chaitin’s Number Talks To Turing’s Halting Problem

Why is Chaitin’s number considered unknowable even though the first few bits have been computed?

In last week’s podcast,, “The Chaitin Interview V: Chaitin’s Number,” Walter Bradley Center director Robert J. Marks continued his conversation with mathematician Gregory Chaitin( best known for Chaitin’s unknowable number) on a variety of things mathematical. Last time, they looked at whether the unknowable number is a constant and how one enterprising team has succeeded in calculating at least the first 64 bits. This time, they look at the vexing halting problem in computer science, first identified by computer pioneer Alan Turing in 1936: https://episodes.castos.com/mindmatters/Mind-Matters-128-Gregory-Chaitin.mp3 This portion begins at 07:16 min. A partial transcript, Show Notes, and Additional Resources follow. Robert J. Marks: Well, here’s a question that I have. I know that the Omega or Chaitin’s number is based Read More ›

matrix-made-up-of-math-formulas-and-mathematical-equations-illustration-rendering-stockpack-adobe-stock.jpg
matrix made up of math formulas and mathematical equations - illustration rendering

Getting To Know the Unknowable Number (More or Less)

Only an infinite mind could calculate each bit

In this week’s podcast, “The Chaitin Interview IV: Knowability and Unknowability,” Walter Bradley Center director Robert J. Marks interviewed mathematician Gregory Chaitin on his discovery of the “unknowable number.” How can a number that is unknowable exist? Some numbers go on indefinitely (.999999999… ) but we can describe them accurately even if they don’t seem to come to an end anywhere. Some numbers, like pi (π), are irrational — pi goes on and on but its digits form no pattern. However, what does it mean to say that a number exists if it is unknowable? How do we even know it exists? That’s the topic of this series, based on the fourth podcast between Dr. Marks and Gregory Chaitin. Note: Read More ›